Задача 1. Морской бой

Ввод данных: стандартный поток ввода Вывод результатов: стандартный поток вывода

Ограничение по времени: 1 секунда Ограничение по памяти: 256 MiB

Всем известны классические правила игры в морской бой. Два участника расставляют свои корабли на клеточном поле размером 10×10 , а затем по очереди называют координаты на поле противника с целью попасть в клетку, занятую кораблем. Если происходит попадание, то игрок делает еще один ход. Иначе ход переходит противнику.

У каждого игрока есть 10 кораблей, представляющих собой ряды из клеток:

- 1 корабль ряд из 4 клеток («линкоры», или «четырёхпалубные»),
- 2 корабля ряд из 3 клеток («крейсеры», или «трёхпалубные»),
- 3 корабля ряд из 2 клеток («эсминцы», или «двухпалубные»),
- 4 корабля 1 клетка («подлодки», или «однопалубные»).

Корабли размещаются на поле горизонтально или вертикально.

Правильной расстановкой кораблей является расстановка, удовлетворяющая следующим условиям:

- 1. все корабли игрока присутствуют на поле,
- 2. каждый корабль размещается на поле горизонтально или вертикально.
- 3. клетки, не занятые кораблями игрока, свободны,
- 4. никакие два корабля не соприкасаются ни сторонами, ни углами.

Требуется написать программу, которая проверит правильность размещения кораблей на поле.

Формат входных данных

10 строк по 10 символов, каждый из которых является либо '0', либо '1', описывающие состояние игрового поля для игры в морской бой. '1' обозначает клетку, занятую кораблем, а '0' – свободную клетку.

Формат выходных данных

В первой и единственной строке 'YES', если заданная расстановка является правильной, и 'NO' в противном случае.

Примеры

(См. на обратной стороне)

стандартный поток ввода	стандартный поток вывода
1111000000	YES
0000010100	
101000000	
1010001010	
101000000	
0000011000	
0011000000	
0000011000	
000000000	
000000000	
1111000000	NO
0000010100	
1010000000	
1010001010	
101000000	
0000011000	
0001100000	
0000011000	
000000000	
000000000	

Задача 2. Территория

Ввод данных: стандартный поток ввода Вывод результатов: стандартный поток вывода

Ограничение по времени: 1 секунда Ограничение по памяти: 256 MiB

Спорная территория имела форму выпуклого многоугольника. Два государства, воевавшие за нее, утомившись длительным противостоянием, решили заключить мирный договор, согласно которому спорная территория должна быть поделена между ними в соотношении $P \ \mathrm{K} \ Q$, в соответствии с оставшейся численностью войск этих государств. Для простоты было решено провести границу в виде вертикального отрезка. Определите, где именно следует установить границу.

Формат входных данных

В первой строке три целых числа через пробел: N – количество вершин многоугольника, задающего спорную территорию, $3\leqslant N\leqslant 100,\ P,\ Q$ – неотрицательные числа, сумма которых не превышает 100.

Далее N строк, в каждой из которых по два целых числа через пробел, – координаты X, Y вершин выпуклого многоугольника, задающего спорную территорию, в декартовой системе координат. Все координаты по модулю не превышают 100. Вершины перечислены в порядке обхода против часовой стрелки. Под выпуклым многоугольником понимается многоугольник, углы которого не превышают 180° .

Формат выходных данных

В первой строке и единственной строке одно вещественное число в формате с фиксированной точкой с тремя знаками после десятичной точки – координата X вертикальной прямой, разделяющей исходный многоугольник на две части, так что площадь левой части относится к площади правой как P к Q.

стандартный поток ввода	стандартный поток вывода
4 2 1	3.000
1 1	
4 1	
4 3	
1 3	

Задача 3. Музей

Ввод данных: стандартный поток ввода Вывод результатов: стандартный поток вывода

Ограничение по времени: 1 секунда Ограничение по памяти: 256 MiB

В популярном городском музее N залов. Посещение каждого зала экскурсией школьников занимает 1 час, при этом одновременно в зале может находится только одна группа. В воскресенье на экскурсии записалось M групп школьников, и они хотят обойти все залы. Очевидно, что для посещения музея всеми группами в этом случае потребуется K = max(M,N) часов, и экскурсоводы должны точно знать, в какой зал в какое время какую группу нужно вести. Создайте расписание посещений залов группами школьников такое, чтобы за K часов все группы посетили все залы.

Формат входных данных

В единственной строке два целых числа N и M через пробел, $1 \leqslant N \leqslant 100$, $1 \leqslant M \leqslant 1000$.

Формат выходных данных

K строк по N чисел в каждой строке, разделенных пробелами. G_{ij} (т.е. j-е число в строке i) должно указывать номер группы, посещающей зал номер j в час i. $0 \leqslant G_{ij} \leqslant M$, значение 0 означает, что зал в это время пуст.

стандартный поток ввода	стандартный поток вывода
2 5	1 2
	2 1
	3 5
	4 3
	5 4

Задача 4. Роман

Ввод данных: стандартный поток ввода Вывод результатов: стандартный поток вывода

Ограничение по времени: 1 секунда Ограничение по памяти: 256 MiB

Писатель принес в издательство роман, состоящий из N глав. Каждая глава содержала A_i страниц, i=1..N. Чтобы максимизировать свою прибыль, издательство решило издать роман в нескольких томах, причем страничный объем всех томов должен быть постоянным. Писатель при этом выдвинул следующие требования:

- 1. все главы должны печататься последовательно,
- 2. каждая глава должна быть полностью напечатана в одном томе,
- 3. ни одна глава не должна быть напечатана дважды.

Определите, какое максимальное количество томов может выпустить издательство при том, что роман должен быть издан полностью.

Формат входных данных

В первой строке одно натуральное число N ($1 \le N \le 10000$) – количество глав в романе. Во второй строке N целых положительных чисел A_i , i=1..N, через пробел, каждое из которых обозначает число страниц в i-ой главе романа. Суммарное число страниц не превышает 100000.

Формат выходных данных

В первой строке одно неотрицательное целое число K – максимально возможное количество томов при издании романа с соблюдением всех условий.

стандартный поток ввода	стандартный поток вывода
10	4
1 2 3 6 3 3 2 2 1 1	

Задача 5. Рекуррентная формула

Ввод данных: стандартный поток ввода Вывод результатов: стандартный поток вывода

Ограничение по времени: 5 секунд Ограничение по памяти: 256 MiB

Некоторая целочисленная последовательность A определяется формулой

$$A_n = c_1 \cdot A_{n-1} + c_2 \cdot A_{n-2} + \ldots + c_k \cdot A_{n-k} + d_0 + d_1 \cdot n + d_2 \cdot n^2 + \ldots + d_m \cdot n^m.$$

Нумерация элементов последовательности начинается с 0.

Вычислите $r = A_p \mod q$ при заданных коэффициентах в формуле.

Формат входных данных

В первой строке файла два целых числа k и m, разделенных пробелом, $1\leqslant k\leqslant 40$, $0\leqslant m\leqslant 40$.

Во второй строке k целых чисел, разделенных пробелами, – значения коэффициентов c_i , $i=1\dots k,\ -10^9\leqslant c_i\leqslant 10^9$.

В третьей строке m+1 целых чисел, разделенных пробелами, – значения коэффициентов $d_i,\ i=0\dots m,\ -10^9\leqslant d_i\leqslant 10^9.$

В четвертой строке k целых чисел, разделенных пробелами, – значения $A_i, i=0\ldots k-1,$ первых k элементов последовательности, $-10^9\leqslant A_i\leqslant 10^9.$

В пятой строке 2 целых числа p и q, разделенных пробелом, $0 \leqslant p \leqslant 10^{18}$, $0 < q \leqslant 10^9$.

Формат выходных данных

В единственной строке целое число $r = A_p \mod q, \ 0 \leqslant r < q$

стандартный поток ввода	стандартный поток вывода
2 1	2
1 1	
0 1	
0 1	
4 6	

Задача 6. Шифровка

Ввод данных: стандартный поток ввода Вывод результатов: стандартный поток вывода

Ограничение по времени: 1 секунда Ограничение по памяти: 256 MiB

Одним из критериев качества алгоритма шифрования считается количество символов, позиции которых в зашифрованном и исходном тексте совпадают. Молодой программист придумал простой способ шифрования: сначала записать все символы исходного текста, имеющие нечетные порядковые номера $(1, 3, 5 \dots)$, затем все символы, имеющие четные порядковые номера $(2, 4, 6 \dots)$. Вычислите значение указанного критерия качества для заданного текста.

Формат входных данных

В первой и единственной строке текст, состоящий из строчных латинских букв. Длина текста не превышает 10000 символов.

Формат выходных данных

В единственной строке одно целое число – количество букв в зашифрованном тексте, которые стоят на тех же местах, что и в исходном тексте.

стандартный поток ввода	стандартный поток вывода
cccabab	3

Задача 7. Калькулятор Индианы Джонса

Ввод данных: стандартный поток ввода Вывод результатов: стандартный поток вывода

Ограничение по времени: 2 секунды Ограничение по памяти: 256 MiB

Судя по фильмам, основное занятие археолога Индианы Джонса – поиск сокровищ древних цивилизаций и их кража из мест захоронения. Часто сокровища охраняются весьма сложными устройствами. Иногда для кражи сокровищ Индиана использует прием подмены артефакта, который требуется украсть, на мешочек с песком того же веса и объема. Очевидно, что песок нужной плотности может быть не дешевым, и Индиана хочет минимизировать свои затраты на получение артефакта.

У Индианы есть *N* мешочков с песком, для каждого известны объем и цена одного грамма. Для кражи он собирается ссыпать в один мешочек заданного объема (совпадающего с объемом артефакта) необходимое количество песка из нескольких (не обязательно из всех) мешочков, чтобы получить вес, совпадающий с весом артефакта. Требуется определить минимальную суммарную стоимость песка для кражи артефакта.

Формат входных данных

В первой строке три целых числа N, $1 \leqslant N \leqslant 10000$ — число мешочков с песком, G и V, $1 \leqslant G \leqslant 10000$ и $1 \leqslant V \leqslant 10000$ — вес артефакта (в граммах) и его объем (в кубических миллиметрах). Далее в N строках по два целых числа v_i и c_i , разделенных пробелом, $1 \leqslant v_i \leqslant 10000$, $1 \leqslant c_i \leqslant 10000$, — объем (в кубических миллиметрах) одного грамма песка и цена одного грамма этого песка.

Формат выходных данных

В первой и единственной строке два целых числа — числитель и знаменатель несократимой дроби — искомой стоимости песка для кражи артефакта. Если при заданных условиях создать мешочек заданного люъема и веса невозможно, то вывести в единственной строке '-1'.

стандартный поток ввода	стандартный поток вывода
3 5 10	25/1
1 5	
2 10	
3 5	
1 5 10	-1
1 5	

Задача 8. Вирус

Ввод данных: стандартный поток ввода Вывод результатов: стандартный поток вывода

Ограничение по времени: 1 секунда Ограничение по памяти: 256 MiB

Каждый программист хотя бы раз в жизни писал (или пробовал писать) компьютерный вирус. Покажите свои умения и напишите вредоносный модуль, который будет изменять текст следующим образом: если в тексте встречается символ, представляющий собой цифру от '0' до '9', то с конца текста, предшествующего этой цифре, удаляется соответствующее количество букв (если длины текста недостаточно, то удаляются все буквы текста).

Формат входных данных

В первой и единственной строке непустая последовательность символов, состоящая из строчных латинских букв и цифр. Длина последовательности не превышает 10000.

Формат выходных данных

В первой и единственной строке последовательность символов (возможно, пустая), полученная из исходной применением вредоносного модуля.

стандартный поток ввода	стандартный поток вывода
abc2de4fgh2klm11	fk

Задача 9. Фасовка конфет

Ввод данных: стандартный поток ввода Вывод результатов: стандартный поток вывода

Ограничение по времени: 1 секунда Ограничение по памяти: 256 MiB

Молодому программисту Васе поставили задачу программирования автомата фасовки конфет. На вход автомату последовательно подаются изготовленные цехом два вида конфет: леденцы «Барбарис» и шоколадные конфеты «Вкус лета» с желейной начинкой.

Автомат состоит из конвейера подачи конфет, весов с двумя чашами, которые определяют какая из чаш легче или что веса равны, и трех контейнеров A, B и C. Контейнер A предназначен для леденцов, контейнер B для шоколадных конфет, контейнер C является вспомогательным.

Известно, что леденцы легче, чем шоколадные конфеты, леденцов всего было изготовлено N штук, шоколадных конфет – M штук.

Автомат может выполнять следующие действия:

- 1) положить конфету с конвейера на пустую чашу весов или в любой контейнер
- 2) сравнить вес конфет на весах
- 3) отправить любую из конфет с весов в любой контейнер,
- 4) отправить все конфеты из контейнера C в контейнер A или B

Вася выяснил, что самая долгая операция автомата — взвешивание двух конфет, поэтому он решил написать алгоритм, минимизирующий число взвешиваний при распределении конфет по контейнерам A и B для наихудшего возможного случая подачи конфет по конвейеру. Определите число взвешиваний, гарантирующее правильное распределение всех конфет по контейнерам A и B.

Формат входных данных

В единственной строке два целых числа через пробел: $N, 1 \leqslant N \leqslant 500$ и $M, 1 \leqslant M \leqslant 500$.

Формат выходных данных

В единственной строке одно целое число – число взвешиваний, гарантирующее правильное распределение всех конфет по контейнерам A и B.

стандартный поток ввода	стандартный поток вывода
4 2	3

Задача 10. Зомби

Ввод данных: стандартный поток ввода Вывод результатов: стандартный поток вывода

Ограничение по времени: 1 секунда Ограничение по памяти: 256 MiB

Разработчикам игры про восставших зомби требуется определить разумный баланс игры, поэтому они просят Вас написать программу, которая вычислит математическое ожидание числа убитых игроком зомби. У игрока есть ружье, число патронов в котором M. При выстреле игрок всегда попадает либо в тело зомби, либо в голову. В голову он попадает с вероятностью C. Известен уровень здоровья зомби — H единиц. При попадании в голову уровень здоровья уменьшается на D_C единиц, при попадании в тело — на D единиц. Если уровень здоровья становится меньше либо равен нуля, то зомби погибает. Игрок стреляет в одного и того же зомби до тех пор, пока тот не погибнет.

Формат входных данных

В единственной строке 5 целых чисел, разделенных пробелами. Первое число M, $1\leqslant M\leqslant 50$. Второе число $C,\ 0\leqslant C\leqslant 100$, — вероятность попадания в голову в процентах. Остальные 3 числа $H,\ 1\leqslant H\leqslant 100,\ D,\ 1\leqslant D\leqslant H,$ и $D_C,\ 1\leqslant D_C\leqslant H.$

Формат выходных данных

В первой и единственной строке одно вещественное число – искомое математическое ожидание числа убитых зомби в формате с фиксированной точкой, погрешность которого не превышает 10^{-3} .

стандартный поток ввода	стандартный поток вывода
4 50 3 1 2	1.5625